CEMC GRADES 9/10 MATH CIRCLES NOVEMBER 23/30, 2022 FORMAL LOGIC - SOLUTIONS

1. INTRODUCTION

Find the error in the following arguments.

- (1) I have only ever seen black cats. Therefore all cats must be black.
- (1) Just because I haven't seen a white cat doesn't mean they don't exist.
- (2) Sharks eat fish. I am not a fish. Therefore a shark will not eat me.
- (2) We don't know that sharks only eat fish.
- (3) If I eat healthy and exercise I will become stronger. I eat healthy. Therefore I will become stronger.
- (3) You need to both eat healthy and exercise to be guaranteed results.
- (4) All stock brokers want to make money. Smarter investors will make more money. Money does not buy happiness. Therefore smart stock brokers will not be happy.
- (4) Smart investors will make more money and that is not guaranteed to make them happier, but it might.

2. Implication

Transform the following statements into an implication using "If... then...".

- (1) You'll catch a cold without a coat!
- (1) If you don't wear your coat then you will catch a cold
- (2) Buy one get one free.
- (2) If you buy one then you will get one free
- (3) I get sleepy when I read.

- (3) If I read then I will get sleepy.
- (4) Beautiful sunsets deserve to be seen.
- (4) If a sunset is beautiful then it deserves to be seen.

What is the hypothesis and conclusion in the following implications?

- (1) If she stands too close to the edge then she will fall.
- Hypothesis: She stands too close to the edge. Conclusion: She will fall.
- (2) If everyone wants to go to the mall then we can go.
- (2) Everyone wants to go to the mall. Conclusion: We can go.

3. Other Logical Connectives

Let P = "I sing loudly", Q = "I dance well" R = "The audience claps". Write the following logical statements in English.

- (1) $P \wedge R$ "I sing loudly and the audience claps"
- (2) $P \Rightarrow R$ "If I sing loudly then the audience claps".
- (3) $(P \lor Q) \Rightarrow R$ "If I sing loudly or dance well then the audience claps".
- (4) $(\neg R \Rightarrow \neg Q)$ "If the audience does not clap then I do not dance well"

Fill in the following truth tables

	P	$P \lor \neg P$
(1)	Т	Т
	F	Т
	Q	$Q \wedge \neg Q$
(2)	Т	F
	F	F

P	Q	R	$Q \wedge R$	$P \lor (Q \land R)$
Т	Т	Т	Т	Т
Т	Т	F	F	Т
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	Т	Т
F	Т	F	F	F
F	F	Т	F	F
F	F	F	F	F
P	$\neg I$	- 7	$\neg \neg P$	
Т	F		Т	
F	Т		F	
	T T T F F F F T	T T T T T F T F T F T F F T F F F F F F T F T F T F T F T F T F T F	T T T T T F T F T T F T T F T F T F F F T F F T F F T F F T F F T T F F T F F T F F T F F	T T T T T T T T T F F T F T F T F F F T F F F T F F F F T F F F T F F F F F F F F F F F F F F P $\neg P$ $\neg \neg P$ T F T T

4. TAUTOLOGIES AND HOW TO WIN ARGUMENTS

Are the following formulas tautologies?

- (1) $P \Rightarrow (P \land Q)$
- (1) No. Consider the following partial truth table

P	Q	$P \wedge Q$	$P \Rightarrow (P \land Q)$
Т	F	F	${ m F}$

- (2) $\neg \neg P \Rightarrow P$
- (2) This is a tautology. It has the truth table

P	$\neg \neg P$	$\neg \neg P \neg \neg P \Rightarrow P$	
Т	Т	Т	
F	F	Т	

 $(3) \ (P \lor \neg P) \Rightarrow Q$

(3) No. Consider the following partial truth table

P	Q	$P \lor \neg P$	$(P \lor \neg P) \Rightarrow Q$
Т	F	Т	F

 $(4) \ (P \land \neg P) \Rightarrow Q$

(4) This is a tautology. It has the truth table

P	Q	$P \land \neg P$	$(P \land \neg P) \Rightarrow Q$
Т	Т	F	Т
Т	F	F	Т
F	Т	\mathbf{F}	Т
F	F	F	Т

Check if the following arguments are valid or not.

- (1) If you give a mouse a cookie then he's going to want some milk.
- (2) If you give a mouse some milk he's going to want a straw.
- (3) Therefore if you give a mouse a cookie he's going to want a straw.

This is a valid argument. Let P = "You give a mouse a cookie", Q = "he wants some milk", and R = "he wants a straw". Then our hypotheses are $P \Rightarrow Q$ and $Q \Rightarrow R$. Our conclusion is $P \Rightarrow R$. Our argument is valid if $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology. We have the following truth table.

P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	Т
Т	F	Т	F	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	Т	Т
F	Т	F	Т	\mathbf{F}	Т
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

(1) If you're still doing these problems then you must like math

(2) Therefore if you do not like math you are not still doing these problems

This is a valid argument. Let P = "You're still doing these problems" and Q = "You like math". Then our only hypothesis is $P \Rightarrow Q$ and our conclusion is $\neg Q \Rightarrow \neg P$. our argument is valid if $(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$ is a tautology. We have the following truth table.

P	Q	$P \Rightarrow Q$	$\neg Q \Rightarrow \neg P$	$(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$
Т	Т	Т	Т	Т
Т	F	\mathbf{F}	\mathbf{F}	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

- (1) A person is tall or short
- (2) A short person is rich or poor
- (3) Therefore a person is tall or rich or poor

This is a valid argument. Let P = "A person is tall", Q = "a person is short", R = "A person is poor", and S = "A person is rich". Then our hypotheses are

6'EMC GRADES 9/10 MATH CIRCLES NOVEMBER 23/30, 2022 FORMAL LOGIC - SOLUTIONS $P \lor Q$ and $Q \Rightarrow (R \lor S)$. Our conclusion is $P \lor (R \lor S)$. Our argument is valid if $((P \lor Q) \land (Q \Rightarrow (R \lor S))) \Rightarrow (P \lor (R \lor S))$ is a tautology. We have the following truth table (which is too big for one line).

P	Q	R	S	$P \lor Q$	$Q \Rightarrow (R \lor S)$	$((P \lor Q) \land (Q \Rightarrow (R \lor S)))$	$(P \lor (R \lor S))$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	F	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т	Т
Т	Т	F	F	Т	${ m F}$	\mathbf{F}	Т
Т	F	Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Т
\mathbf{F}	Т	F	Т	Т	Т	Т	Т
\mathbf{F}	Т	F	F	Т	${ m F}$	\mathbf{F}	F
F	F	Т	Т	F	Т	${ m F}$	Т
F	F	Т	F	F	Т	\mathbf{F}	Т
F	F	F	Т	F	Т	\mathbf{F}	Т
F	F	F	F	F	Т	${ m F}$	F

$((P \lor Q) \land (R \lor S)) \Rightarrow (P \lor (R \lor S))$
Т
Т
Т
Т
Т
Т
Т
Т
Т
Т
Т
Т
Т
Т
Т
Т

5. Semantics

Which of the following logical equivalences are correct?

- (1) $(P \lor \neg P) \lor Q \equiv Q$
- (2) $(P \land \neg P) \lor Q \equiv Q$
- (3) $(P \lor \neg P) \land Q \equiv Q$
- $(4) \ (P \land \neg P) \land Q \equiv Q$

(Answer) 2 & 3

Notice that $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$, and so we can write it without brackets as their is no confusion in saying $P \lor Q \lor R$.

WITHOUT using a truth table show that $\neg (P \lor Q \lor R) \equiv \neg P \land \neg Q \land \neg R$.

By one application of our rule to $\neg((P \lor Q) \lor R)$ we get $\neg(P \lor Q) \land \neg R$. By applying it again we get $\neg P \land \neg Q \land \neg R$.

6. Contrapositive

Prove the following statements by contrapositive.

- (1) If x = 2 then $3x 5 \neq 10$.
- (1) The contrapositive of the statement is "If 3x 5 = 10 then $x \neq 2$ ". If we assume that 3x - 5 = 10 then it follows that x = 5 so it is true that $x \neq 2$.
- (2) If x, y are two integers such that x + y is even, then x and y have the same parity (both odd or both even).
- (2) We assume the negation of the conclusion, that is, that x and y have different parity. and so we may assume that x is even and y is odd (otherwise just swap the letters). The sum of an even number and an odd number is odd, so x + y is not even. This is the negation of the hypothesis, so the statement has been proven.

7. Reductio ad absurdum

Prove the following statements by contradiction.

- (1) If x^2 is even then x is even.
- (1) Assume that x^2 is even AND that x is not even. Then since x is an integer it is odd. But the product of two odd integers is odd, so x^2 must be odd. Therefore x^2 is odd AND it is even. This cannot be, so if x^2 is even then x must be even.
- (2) If $x, y \in \mathbb{R}$ are such that x > 0 and y > 0 then if xy > 25 at least one of x, y must be greater than 5.
- (2) We assume towards a contradiction that xy > 25 and that x, y are both less than or equal to five. But if each number of between 0 and 5 then the biggest their product can be is 25. So $xy \leq 25$ and xy > 25. This is a contradiction, and so the original implication is proven.
- (3) The square root of an irrational number is irrational.(A number is rational if it can be written as a fraction $\frac{p}{q}$ where p, q are integers.
- (3) Assume that x is irrational and that \sqrt{x} is rational. Then since \sqrt{x} is rational we can find some p, q such that $\sqrt{x} = \frac{p}{q}$. But

$$x = (\sqrt{x})^2 = (\frac{p}{q})^2 = \frac{p^2}{q^2}$$

This is a contradiction, because we have assumed that x is not rational and we have written it as a fraction where p^2, q^2 are integers. This proves the original statement.